

signature and comments. Approved By Checked By **Prepared By** yuhsiang.chang yuhsiang.chang ying.xin (張喻翔/514-10922) (張喻翔/514-10922) (忻瑩/562-19748) 2016-05-03 2016-05-03 2016-05-03 15:05:17 CST 15:05:17 CST 12:01:09 CST

Please return 1 copy for your confirmation with your

Version 3.0

Note

03 May 2016

Ø

由 Foxit PDF Editor 编辑 版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

REVISION HISTORY

Ver. 3.0 21 Apr., 2016 All Approval Specification was first issued.	
MMM Panelook. Com	

Version 3.0

03 May 2016

由 Foxit PDF Editor 编辑 版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G101ICE-L01 is a 10.1" TFT Liquid Crystal Display module with LED Backlight units and 40 pins LVDS interface. This module supports 1280 x 800 WXGA mode and can display 16.2M/ 262k colors. The LED driving device for Backlight is built in PCBA.

1.2 FEATURES

- WXGA (1280 x 800 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- Wide operating temperature.
- RoHS compliance

1.3 APPLICATION

- -TFT LCD Monitor
- Factory Application
- Amusement

ltem	Specification	Unit	Note
Active Area	216.96 (H) x 135.60 (V) (10.1" diagonal)	mm	(4)
Bezel Opening Area	218.96 (H) x 137.6 (V)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1280 x R.G.B x 800	pixel	-
Pixel Pitch	0.1695 (H) x 0.1695 (V)	mm	-
Pixel Arrangement	RGB vertical Stripe	-	-
Display Colors	16,194,277 / 262,144	color	-
Display Mode	Normally Black	-	-
Surface Treatment	Hard Coating (3H), Anti-Glare	-	-
Module Power Consumption	9	W	Typical

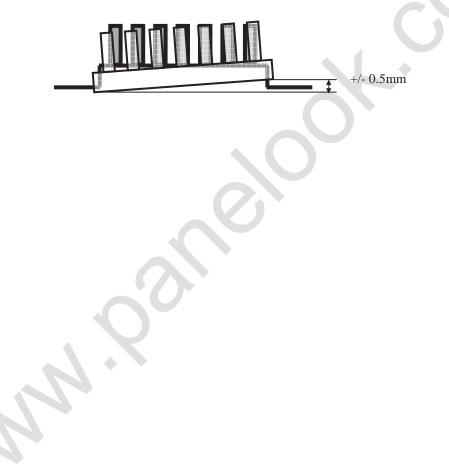
1.4 GENERAL SPECIFICATIONS

Version 3.0

03 May 2016

4 / 28

 \bigcirc


由 Foxit PDF Editor 编辑 版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

1.5 MECHANICAL SPECIFICATIONS

It	tem	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	230.2	230.7	231.2	mm	(1)
Module Size	Vertical(V)	152.05	152.55	153.05	mm	(1)
	Depth(D)	6.0	6.5	7.0	mm	(1)(2)
Bezel Area	Horizontal	217.66	218.96	219.26	mm	
Dezel Alea	Vertical	137.3	137.6	137.9	mm	
Active Area	Horizontal	-	216.96	-	mm	
Active Area	Vertical	-	135.6	-	mm	
Weight		-	360	375	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) The depth is without connector.

Version 3.0

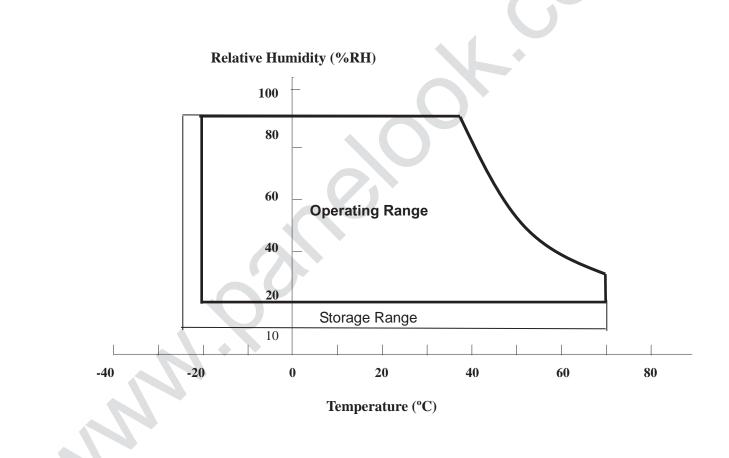
03 May 2016

5 / 28

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Onit	Note
Operating Ambient Temperature	T _{OP}	-20	+70	°C	
Storage Temperature	T _{ST}	-25	+70	°C	


Note (1) Temperature and relative humidity range is shown in the figure below.

(2) 90 %RH Max. (Ta < 40°C).

(3) Wet-bulb temperature should be 39 $^\circ\!\!\mathbb{C}$ Max.

(4) No condensation.

(5) For module only

Version 3.0

03 May 2016

6 / 28

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

ltem	Symbol	Val	ue	Unit	Note	
item	Symbol	Min.	Max.	Onic	Note	
Power Supply Voltage	VCC	-0.3	4	V	(1)	

2.2.2 BACKLIGHT UNIT

ltem	Symbol	Va	lue	Unit	Note
nem	Symbol	Min.	Max.	Onit	NOLE
Converter Voltage	Vi	-0.3	18	V	(1) , (2)
Enable Voltage	EN		5.5	V	
Backlight Adjust	ADJ		5.5	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation

should be restricted to the conditions described under Normal Operating Conditions.

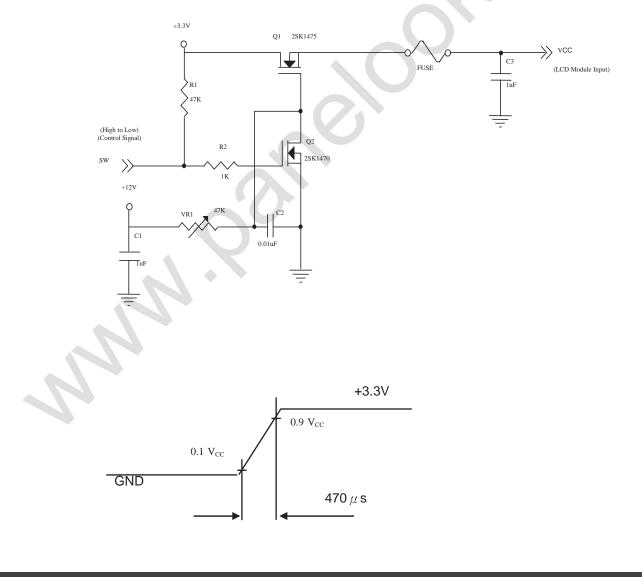
Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Version 3.0

03 May 2016

7 / 28

www.panelook.com 由 Foxit PDF Editor 编辑 版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。


3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Parameter		Symbol		Value		Unit	Note
Falaneter		Symbol	Min.	Тур.	Max.	Onit	NOLE
Power Supply Voltage		V _{CC}	3.0	3.3	3.6	V	-
Ripple Voltage		V _{RP}	-	-	100	mVp-p	
Rush Current		I _{RUSH}	-	-	1.5	А	(2)
Power Supply Current	White	lcc	-	265	320	mA	(3)a
r ower Supply Current	Black	100	-	210	260	mA	(3)b
LVDS differential input voltag	е	Vid	200	-	600	mV	
LVDS common input voltage		Vic	1.0	1.2	1.4	V	
Differential Input Voltage for	"H" Level	V _{IH}			100	mV	-
LVDS Receiver Threshold	"L" Level	V _{IL}	-100			mV	-
Terminating Resistor		R _T	-	100		Ohm	-

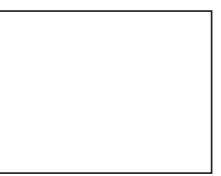
Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:

Version 3.0

03 May 2016

8 / 28

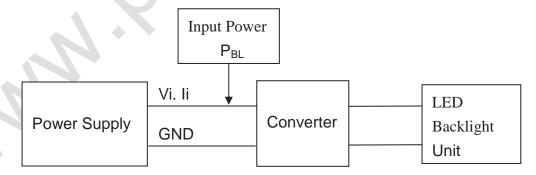

D Panel Exchange Center **Global I**

www.panelook.com 由 Foxit PDF Editor 编辑

所有 (c) by Foxit 公司, 2003 - 2010 PRODU(

- Note (3) The specified power supply current is under the conditions at V_{DD} =3.3V, Ta = 25 \pm 2 °C, DC Current and $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.
 - a. White Pattern

b. Black Pattern



Active Area

3.2 BACKLIGHT UNIT

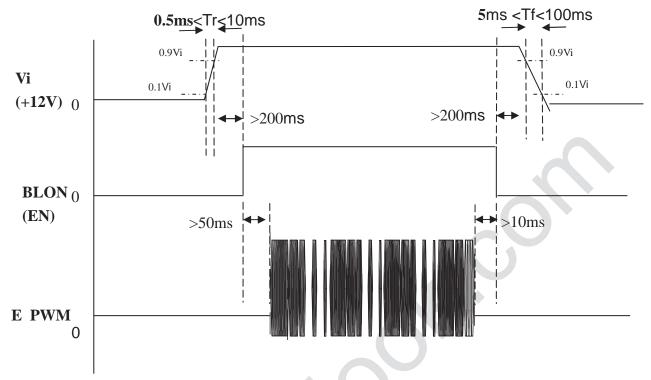
3.2 BACKLIGHT UNIT						Та	i = 25 ± 2 °C
Parameter		Symbol		Value		Unit	Note
		Cymson	Min.	Тур.	Max.	•	Note
Converter Power Supply	Voltage	Vi	10.8	12.0	13.2	V	
Converter Power Supply	Current	L	-	0.45	0.50	А	@ Vi = 12V
	ourient	li		0.40	0.00	~	(Duty 100%)
Backlight Power Consun	P _{BL}		5.3	5.8	w	@ Vi = 12V	
Backlight Fower Consult	iption	ΓBL		0.0	5.0	vv	(Duty 100%)
EN Control Level	Backlight on		2.5	3.3	5.0	V	
	Backlight off		0		0.8	V	
PWM Control Level	PWM High Level		2.5	3.3	5.0	V	
F WWW CONTROL Level	PWM Low Level		0	-	0.15	V	
PWM Control Duty Ratio	-	1	-	100	%	@200Hz	
PWM Control Frequency	f _{PWM}	190	200	20k	Hz	(2)	
LED Life Time		L	50,000	-	-	Hrs	(3)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) At 200 Hz PWM control frequency , duty ratio range is restricted from 1% to 100%

- Note (3) The lifetime of LED is defined as the time when it continues to operate under the conditions at Та
 - = 25 ±2 $^{\circ}$ C and Duty 100% until the brightness becomes \leq 50% of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.

Version 3.0


03 May 2016

9 / 28

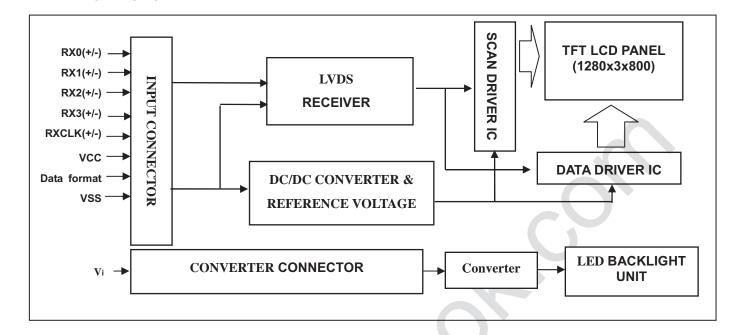
由 Foxit PDF Editor 编辑 版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

Power sequence and control signal timing are shown in the following figure

Note : While system is turned ON or OFF, the power sequences must follow as below descriptions Turn ON sequence: Vi(+12V) \rightarrow BLON \rightarrow E_PWM signal Turn OFF sequence: E_PWM signal \rightarrow BLON \rightarrow Vi(+12V)

Version 3.0

03 May 2016


10 / 28

Ø

由 Foxit PDF Editor 编辑 版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

4. BLOCK DIAGRAM 4.1 TFT LCD MODULE

03 May 2016

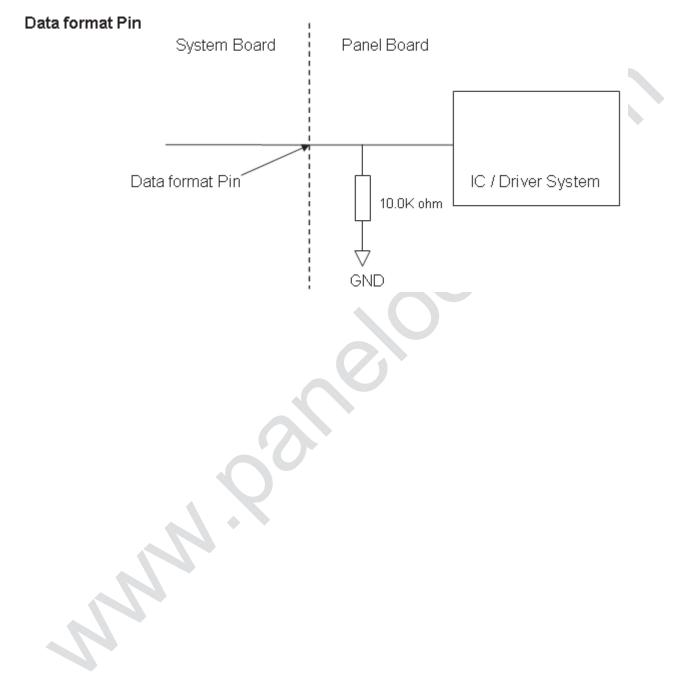
Ø

由 Foxit PDF Editor 编辑 版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin No.	Symbol	Function	Polarity	Note
1	vccs	Power Supply +3.3V(typical)		
2	vccs	Power Supply +3.3V(typical)		
3	VCCS	Power Supply +3.3V(typical)		
4	Data format	Lor NC · Shit Input Mode		Note (2),Note(3)
5	NC	No Conncetion (Reserve for INX test)		
6	NC	No Conncetion (Reserve for INX test)		
7	NC	No Conncetion (Reserve for INX test)		
8	Rxin0-	LVDS Differential Data Input	Negative	
9	Rxin0+	LVDS Differential Data Input	Positive	
10	VSS	Ground		
11	Rxin1-	LVDS Differential Data Input	Negative	
12	Rxin1+	LVDS Differential Data Input	Positive	
13	VSS	Ground		
14	Rxin2-	LVDS Differential Data Input	Negative	
15	Rxin2+	LVDS Differential Data Input	Positive	
16	VSS	Ground		
17	RxCLK-	LVDS Differential Clock Input	Negative	
18	RxCLK+	LVDS Differential Clock Input	Positive	
19	VSS	Ground		
20	Rxin3-	LVDS Differential Data Input	Negative	
21	Rxin3+	LVDS Differential Data Input	Positive	
22	VSS	Ground		
23	NC	No Conncetion (Reserve)		
24	NC	No Conncetion (Reserve)		
25	VSS	Ground		
26	VSS	Ground		
27	LED_PWM	PWM Control Signal od LED Converter		
28	LED_EN	Enable Control Signal od LED Converter		
29	LED_GND	LED Ground		
30	LED_GND	LED Ground		
31	LED_GND	LED Ground		
32	LED_GND	LED Ground		
33	LED_GND	LED Ground		
34	NC	No Conncetion (Reserve)		
35	NC	No Conncetion (Reserve)		
36		LED Power Supply		
37	Î	LED Power Supply		
38		LED Power Supply		
39	Î	LED Power Supply		
40	LED_VCCS	LED Power Supply		


Version 3.0

03 May 2016

12 / 28

- Note (1) Connector Part No.: I-PEX 20455-040E-12 or Tyco_5-2069716-3.
- Note (2) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connection".
- Note (3) Interface optional pin has internal scheme as following diagram, Customer should keep the interface voltage level requirement which including panel board loading as below.

Version 3.0

03 May 2016

版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D	ata	Sig	nal										
	Color	Red				Green					Blue														
		R7	R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	G3	G2	G1	G0	R7	R6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:			<u>(</u>	:	:	:	:	:	:	:	:	:
Of I	: Ded(050)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Ded	Red(252)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(252)	1 1	1 1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(252)	-		1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	- :		÷	Ċ		:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:		:		÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
I - roon	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(252) Green(252)	0 0	0 0	0	0	0	0	0	0	1	1	1	1	1 1	1	1	0	0	0	0	0	0	0	0	0
L	· /	-		0	0	0	0	0	0	1	1	1	1		1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0 0	0	V	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1) Blue(2)	0 0	0	0	0 0	0 0	0 0	0	0	0	0		0 0	0	0	0	0	0 0	0	0	0	0	0	0	1
Gray								0	0	0	0	0	0	0 :	0	0	0	0	0	0	0	0	0	1	0
Scale	:		:			÷	:	:	:	:	:	:	:			:	:	:		:	:	:	:	:	:
Of	Blue(252)	0	0	: 0	: 0	0	: 0	0	: 0	0	0	0		: 0	0	0	: 0	1	: 1	1	1		1	: 0	1
	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 3.0

03 May 2016

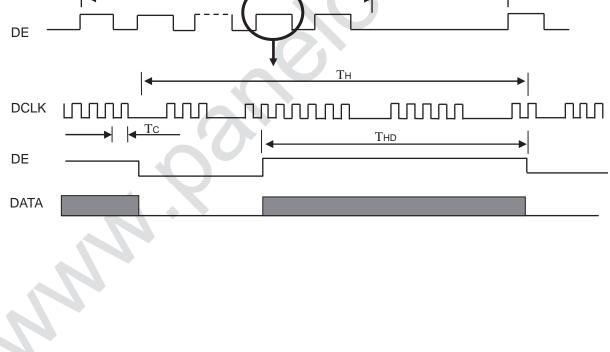
14 / 28

www.panelook.com 由 Foxit PDF Editor 编辑

版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

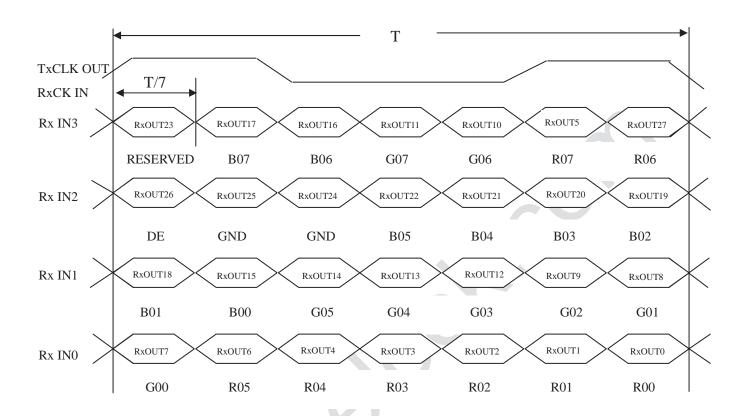

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Pixel Clock	1/T _C	60.40	71.1	74.7	MHz	-
	Vertical Total Time	Tv	810	823	829	Τ _Η	-
DE	Vertical Address Time	T _{VD}	800	800	800	T _H	-
	Horizontal Total Time	Τ _Η	1362	1440	1480	Tc	-
	Horizontal Address Time	T _{HD}	1280	1280	1280	T _c	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to

low logic level or ground. Otherwise, this module would operate abnormally.

Version 3.0


03 May 2016

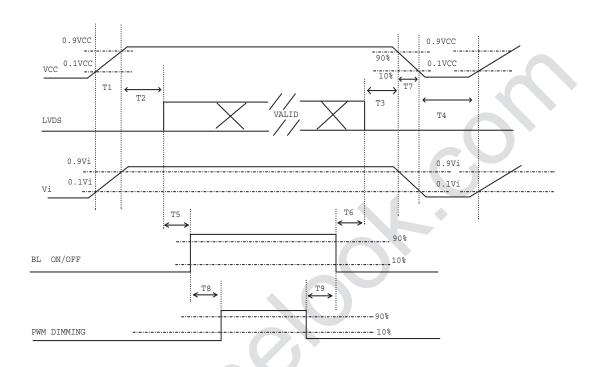
www.panelook.com 由 Foxit PDF Editor 编辑

版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

TIMING DIAGRAM of LVDS

Version 3.0

03 May 2016


16 / 28

由 Foxit PDF Editor 编辑 权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(WHT

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

Note (1) Please avoid floating state of interface signal at invalid period.

Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.

Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Parameter		Value									
Farameter	Min	Тур	Мах	Units							
T1	0.5	-	10	ms							
T2	0	-	50	ms							
Т3	0	-	50	ms							
T4	500	-	-	ms							
T5	T5 200 -		-	ms							
Т6	200	-	-	ms							
Τ7	5	-	300	ms							
Т8	10	-	-	ms							
Т9	10	-	-	ms							

Version 3.0

03 May 2016

17 / 28

www.panelook.com 由 Foxit PDF Editor 编辑

版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

7. OPTICAL CHARACTERISTICS

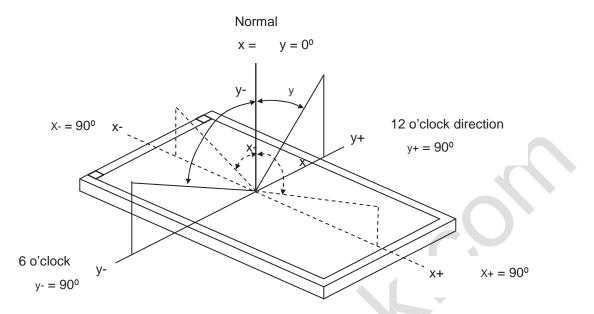
7.1 TEST CONDITIONS

ltem	Symbol	Value	Unit			
Ambient Temperature	Та	25 <u>+</u> 2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V _{CC}	3.3	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
Converter Voltage	Vi	12	V			
Converter Duty		100%				

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

lter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Color Chromaticity	Red	Rx	θ _x =0°, θ _Y =0° CS-1000T	Typ - 0.05	0.592	Тур+ 0.05	-	(1), (5)
		Ry			0.340			
	Green	Gx			0.316			
		Gy			0.591			
	Blue	Bx			0.154			
		Ву			0.123			
	White	Wx			0.313			
		Wy			0.329			
Center Luminance of White		L _C		900	1000	(cd/m ²	(4), (5)
Contrast Ratio		CR		600	800		-	(2), (5)
Boonongo Timo		T _R	$0 - 0^{\circ} 0 - 0^{\circ}$	-	14	17		(2)
Response Time		T _F	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	-	11	14	ms	(3)
White Variation		δ₩	θ _x =0°, θ _Y =0° USB2000	70	-	-	%	(5), (6)
Viewing Angle	Horizontal	θ_x +		80	85	-		
		θ _x -	$CR \ge 10$	80	85	-	Deg.	(1), (5)
	Vertical	θ +	USB2000	80	85	-		
		θ γ-		80	85	-		


Version 3.0

03 May 2016

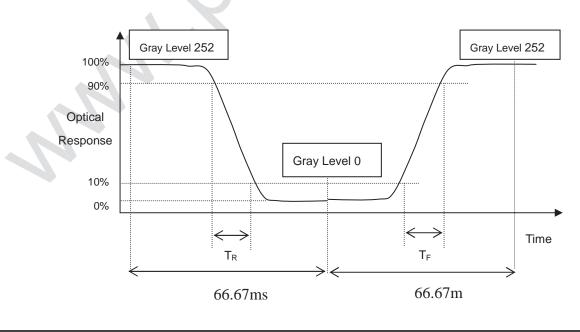
18 / 28

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L252 / L0


L252: Luminance of gray level 252

L0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) :

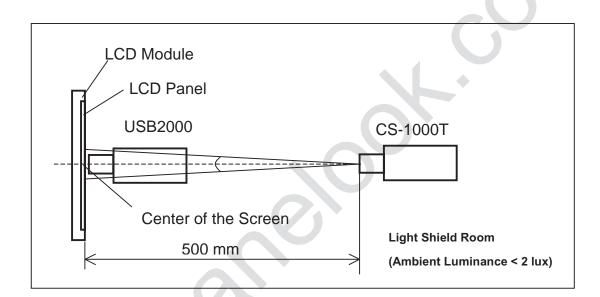
Version 3.0

03 May 2016

19 / 28

由 Foxit PDF Editor 编辑 版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

Note (4) Definition of Luminance of White (L_C):


Measure the luminance of gray level 252 at center point

 $L_{C} = L(5)$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

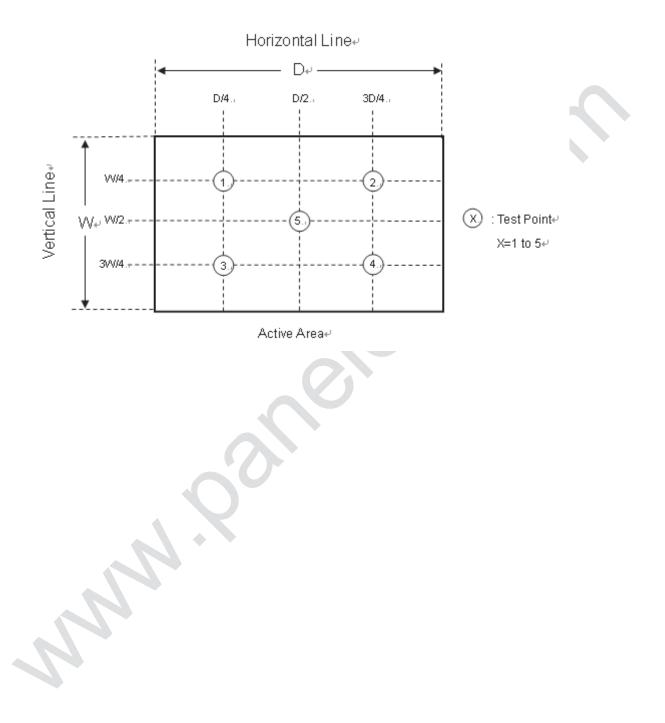
Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Version 3.0

03 May 2016

20 / 28



.panelook.com 由 Foxit PDF Editor 编辑 版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 252 at 5 points

W5p = {Minimum [L (1) ~ L (5)] / Maximum [L (1) ~ L (5)]}*100%

Version 3.0

03 May 2016

21 / 28

www.panelook.com 由 Foxit PDF Editor 编辑 版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	70℃, 240 hours	
Low Temperature Storage Test	-25°C, 240 hours	
Thermal Shock Storage Test	-25° C, 0.5 hour \leftrightarrow 70° C, 0.5 hour; 100cycles, 1 hour/cycle)	(1), (2)
High Temperature Operation Test	70℃, 240 hours	(1), (2) (4),(5)
Low Temperature Operation Test	-20°C, 240 hours	()/()
High Temperature & High Humidity Operation Test	60℃, RH 90%, 240 hours	
ESD Test (Operation)	150pF, 330 Ω , 1 sec/cycle Condition 1 : panel contact, ±8 KV Condition 2 : panel non-contact ±15 KV	(1)
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$ direction	(1), (3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz sine wave, 10 min/cycle, 3 cycles each X, Y, Z direction	(1), (3)

Note (1) No display malfunction.

- Note (2) Judgment should be tested after storage at room temperature for more than two hour. All the cosmetic specification is judged before reliability test.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) Temperature of panel display surface area should be $75^\circ C$ Max.
- Note (5) Test condition for module only

Version 3.0

03 May 2016

版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。

9. PACKAGING

9.1 PACKING SPECIFICATIONS

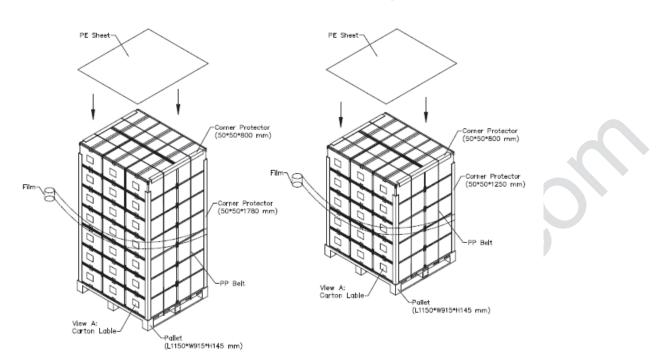
- (1) 28pcs LCD modules / 1 Box
- (2) Box dimensions: 435(L) X 350 (W) X 275 (H) mm
- (3) Weight: approximately 12.02Kg (28 modules per box)

9.2 PACKING METHOD

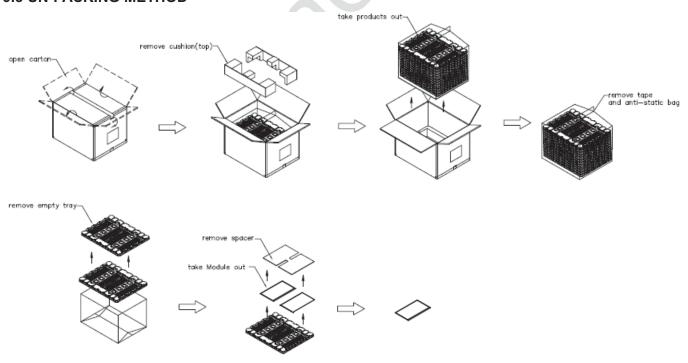
Version 3.0

03 May 2016

23 / 28


www.panelook.com 由 Foxit PDF Editor 编辑

版权所有 (c) by Foxit 公司, 2003 - 2010 PRODU(仅用于评估。


Sea & Land Transportation

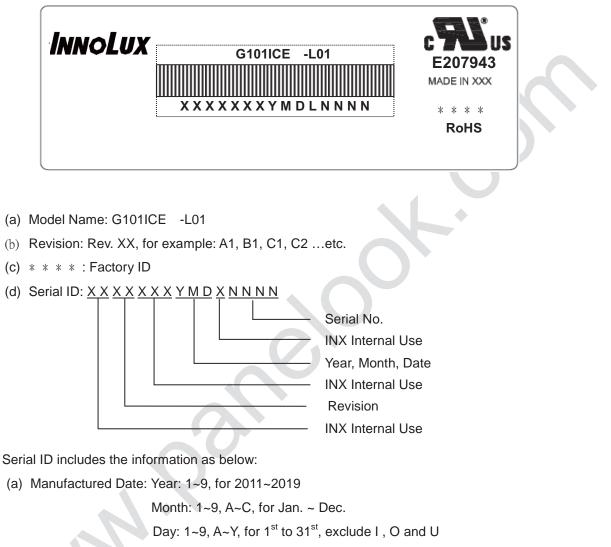
Air Transportation

9.3 UN-PACKING METHOD

Version 3.0

03 May 2016

24 / 28



PRODUCT SPECIFICATION

10. DEFINITION OF LABELS

10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product

Version 3.0

03 May 2016

25/28

PRODUCT SPECIFICATION

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

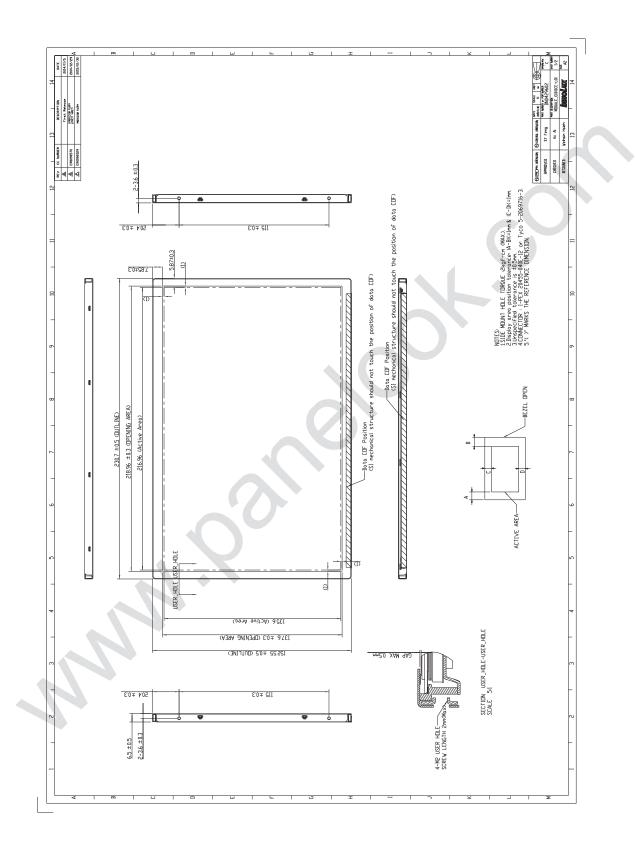
11.2 SAFETY PRECAUTIONS

- (1) Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

Version 3.0

03 May 2016

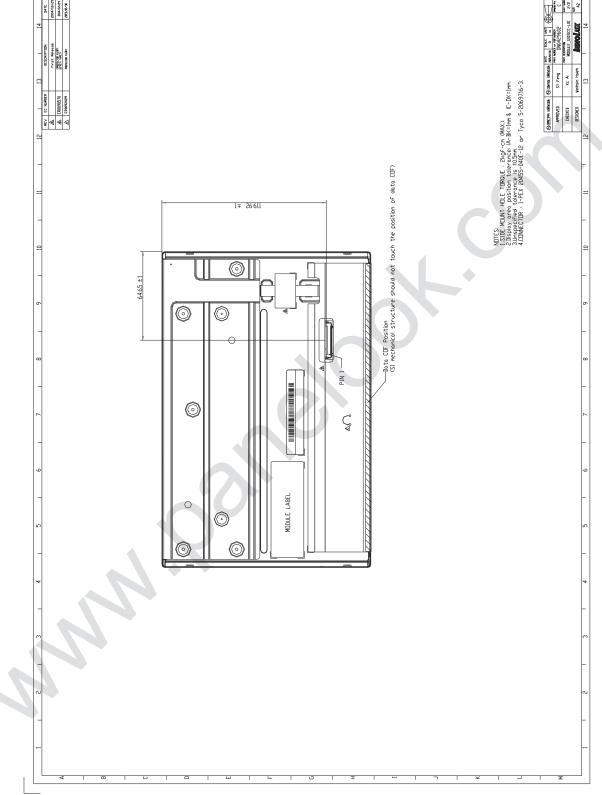
26/28


INNOLUX

PRODUCT SPECIFICATION

12. MECHANICAL CHARACTERISTICS

Version 3.0


03 May 2016

27 / 28

PRODUCT SPECIFICATION

Version 3.0

03 May 2016